Design of a Microchannel Based Solar Receiver/reactor for Methane-steam Reforming
نویسندگان
چکیده
This study investigates use of solar thermochemical processing of clean fuels using biomass products (in particular CH4, H2O). To address technological feasibility of a microchannel-based solar receiver/reactor, a combined numerical and experimental study of methane-steam reforming is carried out on a single microchannel with Palladium-deposited channel walls and heat input to facilitate endothermic heterogeneous reactions producing hydrogen. A simple one-dimensional model solving steady state species mass fraction, energy, and overall conservation of mass equations is developed, calibrated and validated against concurrent experimental data [1, 2]. Methane-steam reforming is modeled by three reduced-order reactions occurring on the reactor walls. The effects of the total heat input, heat flux profile, and inlet flow rate on production of hydrogen are investigated to assess the effectiveness of the microchannel configuration for production of hydrogen. A coupled shape-constrained optimization and Monte-Carlo radiative heat transfer model is developed to design a receiver shape that can yield a desired heat flux distribution on the channel walls for improved yield of hydrogen. ∗[email protected] †[email protected]
منابع مشابه
Conceptual Design of an Autonomous Once-through Gas-to- Liquid Process with Microchannel Fischer-Tropsch Reactors
Converting remote natural gas to liquid fuel is one possible solution to the problem of transporting remote gas to the energy market. However, the high investment cost of gas-to-liquid (GTL) plants prevents large scale exploitation of remote gas reserves. A lean GTL is suggested based on an autothermal reformer with enriched air as oxidant and a once-through Fischer-Tropsch synthesis. In order ...
متن کاملMethane and Methanol Steam Reforming in a Membrane Reactor for Efficient Hydrogen Production and Continuous Fuel Cell Operation
Our goal in this paper is the description and analysis of new findings and results on membrane reactors and catalytic reactors/heterogeneous processors for the steam reforming reactions of methane, natural gas, and methanol for use in power generation systems and fuel cells. The current communication continues this research by giving emphasis in the so-called “Improved Reaction” and “ReformingF...
متن کاملEfficient production of hydrogen from natural gas steam reforming in palladium membrane reactor
Ultra-thin, high performance composite palladium membrane, developed via a novel electroless plating method, was applied to construct a membrane reactor for methane steam reforming reaction, which was investigated under the following working conditions: temperature 723–823 K, pressure 300–900 kPa, gas hourly space velocity (GHSV) 4000–8000 mL g 1 cat h , steam-to-carbon feed ratio (S/C, mol/mol...
متن کاملMethane oxy-steam reforming over a highly efficient Ni/Al2O3 nanocatalyst prepared by microwave-assisted impregnation method
An alumina-supported nickel catalyst was prepared by impregnation of Ni2+ solution onto mesoporous alumina under microwave irradiation (denoted as M-Ni/Al2O3). For comparison, a catalyst with the same nickel content was prepared by conventional impregnation method (denoted as UM-Ni/Al2O3). Both M-Ni/Al2O3 and UM-Ni/Al2O3 catalysts were applied to the syngas (H2 + CO) production by methane oxy-s...
متن کاملSurface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts
An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shi...
متن کامل